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Controlling the multistability of nonlinear systems with coexisting attractors
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A method for controlling generalized multistability is suggested. The method implies the application of a
small harmonic modulation with properly chosen frequency and amplitude to a system parameter. The possi-
bility of control is demonstrated with the example of the He´non map with coexisting period-1, period-3, and
period-9 attractors. It is shown that one or more coexisting attractors can lose their stability and the attractor
can undergo crisis when the control frequency is close to the relaxation oscillation frequency or its subhar-
monics of the corresponding attractor.
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The coexistence of multiple attractors is one of the m
exciting phenomena in nonlinear dynamics. This pheno
enon, referred to as generalized multistability@1#, has been
observed in various systems, including electronic circuits@2#,
lasers@3#, and mechanical@4# and biological systems@5#.
However, very often the coexistence of multiple attractors
not desirable. For instance, in a laser with intracavity f
quency doubling the multistability can result in instabiliti
in the laser intensity, known as the green problem@6#. Not-
withstanding the important problem of controlling mult
stable systems, there are no efficient methods for such
trol to our knowledge. It seems that a proper change in ini
conditions might be appropriate in this situation, for e
ample, in the form of a short external impact@7#. However,
in many cases it is not possible to switch the system on
off, for instance, for some kind of biological or chemic
processes. Moreover, there is no guarantee that the sy
after such a switch will change its state or that some nois
instability will force the system to jump back from the s
lected state.

It is also possible to provide some regulation of the ste
state of a nonlinear system through adaptive control mec
nisms @8#, which utilize an error signal proportional to th
difference between the goal output and the actual traject
This error signal governs the change of the parameters o
system so as to reduce the error to zero. This is one of
feedback control methods, which require an appropr
feedback loop and permanent tracking of the system sta
order to apply the control as soon as the system switche
another coexisting attractor due to, e.g., noise or any o
instability. Another control algorithm to drive trajectories
a desirable attractor by using small feedback control
been suggested by Lai@9#. His idea is to build a bushlike
structure of paths to the target attractor and to stabiliz
trajectory around one of the many paths so that the trajec
asymptotes to the desirable attractor. However, at pre
there is no guarantee that the method can be used in prac
applications@10#. The success of the method relies on t
region in the phase space to which the bush extends and
method is effective when there are fractal basin bounda
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with large values of fractal dimension. In contrast, there is
appreciable increase in the probability for a trajectory to
driven to the desirable attractor if the basin boundaries
smooth. We also remark that the feedback control meth
require a prior knowledge of the system behavior and the
fore they are not appealing for systems whose state is im
sible or difficult to measure in real time and where a fee
back loop is hard to realize, for example, for some medi
and biological applications.

There exists another approach for controlling a syst
with coexisting attractors, namely, annihilation of an und
sirable attractor. It was shown in a recent Letter@11# that a
parameter modulation with properly chosen frequency a
amplitude can destroy one of the coexisting attractors i
bistable system. Such a modulation can cause a crisis in
attractor that leads to its destruction. However, a new qu
tion arises: Is it possible to affect the attractors selectively
order to annihilate simultaneously various attractors in
multistable system for the purpose of making the syst
monostable? This work provides a positive answer to t
question. Here we will demonstrate with the example of
multistable He´non map how multiple attractors can be d
stroyed by nonfeedback parameter modulation, and
show how optimal conditions can be chosen for realizat
of this method.

The Hénon map is one of the simplest systems that d
play generalized multistability. The He´non map@12# is de-
scribed by

xn11512mxn
21yn , ~1!

yn1152Jxn , ~2!

wherexn and yn can be measured as time series,J50.9 is
the Jacobian related to dissipation, andm is the control pa-
rameter. We found that the map Eqs.~1! and~2! exhibits the
coexistence of three attractors~period 1, period 3, and period
9! in the parameter range 1.077,m,1.089. The period-3
attractor coexists with the period-1 attractor in the ran
0.92,m,1.18. The bifurcation diagram for the uncontrolle
case in shown in Fig. 1. The attractors have different rel
ation oscillation frequenciesf r , which depend on the param
eterm. The frequencyf r can be measured numerically from
a time series as the frequency of damped oscillations aft
small disturbance from the equilibrium point. The depe
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dences off r on m for each attractor are shown in Fig. 2. F
example, atm51.089 the relaxation oscillation frequencie
for the period-3 and period-9 attractors aref r

(3)50.106 and
f r

(9)50.0275. In fact,f r is equal to the imaginary part of th
eigenvalue of the corresponding fixed point. However, it
not easy to find these values analytically because even
the period-3 attractor one needs to solve an eighth-o
characteristic algebraic equation.

Since each attractor has its own characteristic freque
it becomes possible to act selectively on the desired attra
by modulating a system parameter with a properly cho
frequency. The control is applied in the form of the harmo
modulation

m5m01mc sin~2p f cn!, ~3!

where mc and f c are the amplitude and frequency of th
control. The initial value of the control parameter,m0
51.083, is fixed at the middle point of the period-9 bran
~shown by the arrow in Fig. 1!. The control amplitudemc is
considered to be relatively small, so that no qualitat

FIG. 1. Bifurcation diagram of the He´non map with coexisting
period-1, period-3, and period-9 attractors. The arrow indicates
initial position of the parameterm051.083 where the control is
applied.
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changes in the system behavior occur for the uncontro
case, ifm is changed fromm0 to m06mc . Also, the modu-
lation is a slow one in the sense thatf c!1. Nevertheless, as
we will show below, such a weak and slow modulation w
a properly chosenf c enables one to drastically affect th
organization of the attractors and to annihilate one or m
coexisting attractors.

In Fig. 3 we plot the annihilation curves~stability bound-
aries! for the period-9 and period-3 attractors in the space
the control parametersmc and f c . When the control ampli-
tude is above the annihilation curve, the corresponding s
is destroyed. The horizontal lines indicate the level of t
modulation amplitude at which the control parameter cros
the boundaries of attraction in the quasistationary case,
when f c→0. As seen from the figure, the annihilation curv
have several extrema. The optimal conditions for attrac
annihilation ~the minimal control amplitude! are realized
when f c is close to f r of the corresponding attractor. Th
other extremum in Fig. 3~a! appears at a subharmonic fre
quency, i.e., whenf c5 f r

(3)/2.
The effect of the control modulation on the destruction

the coexisting attractors is demonstrated with the time se
shown in Fig. 4. In this figure we illustrate the consecuti
annihilation of the coexisting attractors. Initially, prior to th
control (n,n1) three periodic attractors coexist atm0
51.083. Starting from the initial conditions for period 9, w
apply the control modulation Eq.~3! with mc50.0029 and
f c50.0275 atn5n1. The parameters of the control modul
tion are chosen to lie above the annihilation curve shown
Fig. 3~b!, but to be close to the curve. Since the annihilati
curves in Fig. 3 are stability boundaries of the correspond
attractors, the transient time increases when the param
approach the curves. After the transients the period-9 att
tor undergoes crisis that leads to the attractor destruct
and the system goes to period 3. A small-amplitude respo
to the control modulation is seen in the period-3 state. Ho
ever, the control frequency is too far from the resonan
frequency for the period-3 attractor and the control amp
tude is too low to have an effect on the period-3 state.
order to make the system monostable, we change the pa

e
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FIG. 2. Relaxation oscillation
frequencies of the period-1~dots!,
period-3 ~squares!, and period-9
~triangles! attractors versus con
trol parameter.
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eters of the control modulation at the instant of timen5n2 to
mc50.023 andf c50.106. These parameters lie above t
annihilation curve for the period-3 attractor@Fig. 3~a!#, and
hence this control leads to crisis of the period-3 attrac
~after transients! followed by a system switch to the remain
ing period-1 state. The periodic modulation is hardly seen
the system response in the period-1 attractor, because i
no resonance frequency~the solution is real! for this value of
m0 ~see Fig. 2!.

The physical mechanism of the annihilation phenomen
may be examined by analyzing the basins of attract
shown in Fig. 5. In this figure we illustrate in a phase spa
plot the situation shown in Fig. 4. The dots inside the bas
have a different color for each attractor: yellow for the
tractor of period 1, blue for the period-3 attractor, and g
for the period 9. The parameter modulation creates perio
orbits in the vicinity of the fixed points@red lines in Fig.

FIG. 3. Annihilation curves for the period-3~squares! and
period-9 ~triangles! attractors in the space of the modulation fr
quency and amplitude form051.083. The optimal conditions fo
annihilation of period 3 and period 9 are realized, respectiv
when ~a! f c5 f r

(3)50.106 or f c5 f r
(3)/250.053 and~b! f c5 f r

(9)

50.0275 ~shown by the arrows!. The corresponding attractor i
destroyed above the annihilation curve, while below these cu
the three attractors coexist. The dashed lines indicate the max
control amplitude at which the system changes the attractor w
f c→0.
04620
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5~b!#. One can see that the amplitude of the system respo
is relatively small whenf c is very different fromf r and the
periodic orbits are located inside the corresponding basin
attraction. However, whenf c approaches the resonance fr
quencyf r or its subharmonics, the control modulation is am
plified by the system and the trajectory~black points in Fig.
5! becomes more extensive and crosses the basin bound
The oscillations may induce period doubling and chaos in
control modulation and finally cause the attractor to unde
crisis ~see Fig. 4!. As soon as the trajectory hits the basin
another attractor, it becomes attracted by the other attra
and approaches the other state along the arrows show
Fig. 5. It should be noted that in the final state the syst
response is modulated with the frequencyf c , but the modu-
lation amplitude is very low becausef r of the target attractor
is very different from f c . The modulation amplitude also
plays a significant role in the attractor annihilation. Althou
mc is small, it should be large enough in order that t
trajectory for the resonant frequency crosses the ba
boundary.

Of course, the diagram shown in Fig. 5 is a very rou
illustration of the dynamical processes leading to attrac
annihilation. Recall that the basins shown in Fig. 5 belong
the uncontrolled system. However, strictly speaking, the
rameter modulation not only creates periodic orbits, it a
changes the organization of the basins of attraction@13#. In
other words, the new attractors created by the param
modulation have different basins of attraction, yet th
change in the attractor boundaries has no effect on the
eral interpretation of the phenomenon. The results on
deformation of attractor boundaries in the modulated He´non
map will be published elsewhere@14#.

To conclude, in this paper we have extended the met
of attractor annihilation introduced in Ref.@11# to dynamical
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FIG. 4. Temporal evolution of the He´non map with coexisting
attractors under the control modulation. Prior to the controln
,n1), three attractors coexist: the period 9~p9!, period 3~p3!, and
period 1~p1!. The control parametersmc50.0029 andf c50.0275
at n>n1, andmc50.023 andf c50.106 atn>n2. The arrows show
the instant of time when the control parameters are changed.
period-9 and period-3 attractors are destroyed after transients.
3-3
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FIG. 5. ~Color! Basins of at-
traction of the period-1~yellow
dots!, period-3 ~blue dots!, and
period-9~gray dots! attractors.~a!
Annihilation of the period-3 at-
tractor at mc50.023 and f c

50.106. ~b! Enlarged diagram of
the rectangular box in~a! showing
the annihilation of the period-9 at
tractor at mc50.0029 and f c

50.0275. The period-1, period-3
and period-9 attractors are show
respectively, by the white dot, red
triangles, and white triangles. Th
new period-9 orbits created by th
modulation withmc50.0029 and
f c50.01 are shown by the red
lines. The arrows indicate the di
rections of the trajectories~black
dots! created by the resonan
modulation leading to the attracto
annihilation.
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systems with multiple coexisting attractors resulting in t
selective control of generalized multistability. With the e
ample of the He´non map, we have demonstrated that a sm
harmonic parameter modulation can annihilate multiple
tractors and make the system monostable. The optimal
ditions for control are achieved when the control frequen
is close to the frequency of relaxation oscillations of t
attractor to be annihilated or its subharmonics. A similar
proach was recently applied to a continuous system, nam
to the Duffing equations with three coexisting attractors@15#
and to a CO2 laser with delayed feedback@16#. The results
were very similar and demonstrate the universality of
method. An important point is the applicability of th
method to other dynamical systems. As seen from Fig. 2
method can be applied to systems that undergo damped
cillations to an equilibrium point so thatf r is finite and non-
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zero. Mathematically, this condition requires complex eige
values for a fixed point or a periodic orbit, i.e., the fixe
point should be a focus. We believe the results of this w
may have many applications, for example, for stabilizat
of a solid state laser with intracavity second harmonic g
eration or a semiconductor laser with optical injection whe
generalized multistability has recently been detected@17#.
The latter laser is often used in communications and the c
trol of multistability is of great interest for such a system.
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