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Controlling the multistability of nonlinear systems with coexisting attractors
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A method for controlling generalized multistability is suggested. The method implies the application of a
small harmonic modulation with properly chosen frequency and amplitude to a system parameter. The possi-
bility of control is demonstrated with the example of thénde map with coexisting period-1, period-3, and
period-9 attractors. It is shown that one or more coexisting attractors can lose their stability and the attractor
can undergo crisis when the control frequency is close to the relaxation oscillation frequency or its subhar-
monics of the corresponding attractor.
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The coexistence of multiple attractors is one of the mostwith large values of fractal dimension. In contrast, there is no
exciting phenomena in nonlinear dynamics. This phenomappreciable increase in the probability for a trajectory to be
enon, referred to as generalized multistabifity, has been driven to the desirable attractor if the basin boundaries are
observed in various systems, including electronic cird@its ~ smooth. We also remark that the feedback control methods
lasers[3], and mechanical4] and biological system§5]. require a prior knowledge of the system behavior and there-
However, very often the coexistence of multiple attractors ifore they are not appealing for systems whose state is impos-
not desirable. For instance, in a laser with intracavity fre-Sible or difficult to measure in real time and where a feed-
quency doubling the multistability can result in instabilities Pack loop is hard to realize, for example, for some medical
in the laser intensity, known as the green probfgh Not-  @nd biological applications. _
withstanding the important problem of controlling multi- There exists another approach for controlling a system

stable systems, there are no efficient methods for such cor){\fith coexisting attractors, namely, annihilation of an unde-

trol to our knowledge. It seems that a proper change in initiaFIrable attractor. It was s'hown in a recent Leftbt] that a
conditions might be appropriate in this situation, for ex- parameter modulation with properly chosen frequency and

ample, in the form of a short external impd@. However, amplitude can destroy one of the coexisting attractors in a

in many cases it is not possible to switch the system on ang'tf::ggrst%zielrgéiufgi; rgggtli L&::t;ic:)nn Cﬁnovcvzl\i? Z(;]I’IeSVIVS 'Eég?
off, for instance, for some kind of biological or chemical ' ' d

processes. Moreover, there is no guarantee that the systet}%n arises. IS.It'pOSSIt')Ie to affect the attractors selectlvelly N
rder to annihilate simultaneously various attractors in a

after such a switch will change its state or that some noise Ol ultistable svstem for the purbose of making the svstem
instability will force the system to jump back from the se- Y purp 9 y

monostable? This work provides a positive answer to this
lected state. uestion. Here we will demonstrate with the example of the
It is also possible to provide some regulation of the stead : P

state of a nonlinear system through adaptive control mechas—tfoltlse?btl)e Hn%a?eglj%g:; w a:?;rlr?g::r a&rgga?;fiocnan at;ﬁj dvt\a/;”
nisms|8], which utilize an error signal proportional to the sh0\>//v howyo timal conditioﬂs can be chosen for ,realization
difference between the goal output and the actual trajectorydf this methc|)0 d

This error signal governs the change of the parameters of the The Haon map is one of the simplest systems that dis-

system so as to reduce the error to zero. This is one of theIa eneralized multistability. The ‘Hen map[12] is de-
feedback control methods, which require an appropriaté’criybg d by Y- P

feedback loop and permanent tracking of the system state in
order to apply the control as soon as the system switches to
another coexisting attractor due to, e.g., noise or any other
instability. Another control algorithm to drive trajectories to

a desirable attractor by using small feedback control has Yn+1= ~JI%, 2
been suggested by L&®]. His idea is to build a bushlike i ) i
structure of paths to the target attractor and to stabilize g\lherexn a_lnd Yn can be meqsurgd as time seri@s;0.9 is
trajectory around one of the many paths so that the trajectorif!® Jacobian related to dissipation, gnds the control pa-
asymptotes to the desirable attractor. However, at presefgmeter. We found that the map E@g) and(2) exhibits the
there is no guarantee that the method can be used in practicgtexistence of three attractdseriod 1, period 3, and period
applications[10]. The success of the method relies on the9) in the parameter range 1.0¢f<1.089. The period-3
region in the phase space to which the bush extends and tigbtractor coexists with the period-1 attractor in the range

method is effective when there are fractal basin boundarie®-92<#<1.18. The bifurcation diagram for the uncontrolled
case in shown in Fig. 1. The attractors have different relax-

ation oscillation frequenciefs , which depend on the param-
*On leave from Stepanov Institute of Physics, National Academyeter . The frequencyf, can be measured numerically from
of Sciences of Belarus, Minsk, Belarus. Electronic addressa time series as the frequency of damped oscillations after a
apisarch@cio.mx small disturbance from the equilibrium point. The depen-

Xn+1:1_,“xﬁ+ynv 1)
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1.5 changes in the system behavior occur for the uncontrolled
———————— case, ifu is changed fromug to ug* u.. Also, the modu-
/ P1 \ lation is a slow one in the sense tHat<1. Nevertheless, as
P
/

1.0t
9 we will show below, such a weak and slow modulation with
a properly choserf, enables one to drastically affect the
\ / organization of the attractors and to annihilate one or more

0.0t coexisting attractors.
= In Fig. 3 we plot the annihilation curvestability bound-
0.5} = arieg for the period-9 and period-3 attractors in the space of
. - the control parameterg, and f.. When the control ampli-
1.0 | 1.2 tude is above the annihilation curve, the corresponding state
H is destroyed. The horizontal lines indicate the level of the
K, modulation amplitude at which the control parameter crosses
] the boundaries of attraction in the quasistationary case, i.e.,
FIG. 1. Bifurcation diagram of the Hi&n map with coexisting whenf,—0. As seen from the figure, the annihilation curves
period-1, period-3, and period-9 attractors. The arrow indicates thggve several extrema. The optimal conditions for attractor
initia_l position of the parametep,=1.083 where the control is  5nnhihilation (the minimal control amplitudeare realized
applied. when f. is close tof, of the corresponding attractor. The
other extremum in Fig. (&) appears at a subharmonic fre-
quency, i.e., wheri=f)/2.
The effect of the control modulation on the destruction of

s 0.5

dences off, on u for each attractor are shown in Fig. 2. For
example, atu=1.089 the relaxation oscillation frequencies

f%)the period-3 and period-9 attractors ahﬁ_é)=0.106 and  the coexisting attractors is demonstrated with the time series
fi7’=0.0275. In factf, is equal to the imaginary part of the shown in Fig. 4. In this figure we illustrate the consecutive
eigenvalue of the corresponding fixed point. However, it isgnnihilation of the coexisting attractors. Initially, prior to the
not easy to find these values analytically becaus_e even fiiontrol (n<n,) three periodic attractors coexist at,
the period-3 attractor one needs to solve an eighth-order 1 083, Starting from the initial conditions for period 9, we
characteristic algebraic equation. apply the control modulation Eq3) with u.=0.0029 and
Since each attractor has its own characteristic frequencyf,czo_0275 atn=n,. The parameters of the control modula-
it becomes possible to act selectively on the desired attractqjon are chosen to lie above the annihilation curve shown in
by modulating a system parameter with a properly chosefig 3(b), but to be close to the curve. Since the annihilation
frequency. The control is applied in the form of the harmoniceryes in Fig. 3 are stability boundaries of the corresponding
modulation attractors, the transient time increases when the parameters
approach the curves. After the transients the period-9 attrac-
p=pot pesin(2mfen), (3 tor undergoes crisis that leads to the attractor destruction,
and the system goes to period 3. A small-amplitude response
where u. and f. are the amplitude and frequency of the to the control modulation is seen in the period-3 state. How-
control. The initial value of the control parametet, ever, the control frequency is too far from the resonance
=1.0883, is fixed at the middle point of the period-9 branchfrequency for the period-3 attractor and the control ampli-
(shown by the arrow in Fig.)1 The control amplitudes. is  tude is too low to have an effect on the period-3 state. In
considered to be relatively small, so that no qualitativeorder to make the system monostable, we change the param-
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1 FIG. 4. Temporal evolution of the en map with coexisting
0.008 |- attractors under the control modulation. Prior to the control (
<n,), three attractors coexist: the period®), period 3(p3), and
0.006 A period 1(pl). The control parameterg.=0.0029 andf,=0.0275

atn=n,, andu.=0.023 andf.=0.106 atn=n,. The arrows show

& A‘\A‘ P1+P3 the instant of time when the control parameters are changed. The
0.004 | \ "~ ‘Af‘““‘m/ period-9 and period-3 attractors are destroyed after transients.
Y Vs .
h“n" W X 5(b)]. One can see that the amplitude of the system response
0.002 | P1+P3+P9 is relatively small wherf is very different fromf, and the
| periodic orbits are located inside the corresponding basins of
0.00 002 '(9) 004 006 008 010 attraction. However, wheh9 approaches the resonance fre-
A f quencyf, or its subharmonics, the control modulation is am-

plified by the system and the trajectaiylack points in Fig.

FIG. 3. Annihilation curves for the period-8quares and ) becomes more extensive and crosses the basin boundaries.
period-9 (triangleg attractors in the space of the modulation fre- The oscillations may induce period doubling and chaos in the
quency and amplitude for,=1.083. The optimal conditions for control modulation and finally cause the attractor to undergo
annihilation of period 3 and period 9 are realized, respectivelyCrisis (see Fig. 4. As soon as the trajectory hits the basin of
when (a) f.=f®=0.106 or f.=f®/2=0.053 and(b) f.=f®  another attractor, it becomes attracted by the other attractor
=0.0275 (shown by the arrows The corresponding attractor is and approaches the other state along the arrows shown in
destroyed above the annihilation curve, while below these curveFig. 5. It should be noted that in the final state the system
the three attractors coexist. The dashed lines indicate the maximaésponse is modulated with the frequerigy but the modu-
control amplitude at which the system changes the attractor whepjtion amplitude is very low because of the target attractor
fe—0. is very different fromf.. The modulation amplitude also

plays a significant role in the attractor annihilation. Although
eters of the control modulation at the instant of timen, to 4. is small, it should be large enough in order that the
ne=0.023 andf,=0.106. These parameters lie above thetrajectory for the resonant frequency crosses the basin
annihilation curve for the period-3 attractdfig. 3@], and  boundary.
hence this control leads to crisis of the period-3 attractor Of course, the diagram shown in Fig. 5 is a very rough
(after transientsfollowed by a system switch to the remain- illustration of the dynamical processes leading to attractor
ing period-1 state. The periodic modulation is hardly seen irannihilation. Recall that the basins shown in Fig. 5 belong to
the system response in the period-1 attractor, because it hise uncontrolled system. However, strictly speaking, the pa-
no resonance frequencthe solution is realfor this value of  rameter modulation not only creates periodic orbits, it also
o (see Fig. 2 changes the organization of the basins of attracti8j. In

The physical mechanism of the annihilation phenomenorother words, the new attractors created by the parameter
may be examined by analyzing the basins of attractiormodulation have different basins of attraction, yet this
shown in Fig. 5. In this figure we illustrate in a phase spacehange in the attractor boundaries has no effect on the gen-
plot the situation shown in Fig. 4. The dots inside the basingral interpretation of the phenomenon. The results on the
have a different color for each attractor: yellow for the at-deformation of attractor boundaries in the modulateddte
tractor of period 1, blue for the period-3 attractor, and graymap will be published elsewhef&4].
for the period 9. The parameter modulation creates periodic To conclude, in this paper we have extended the method
orbits in the vicinity of the fixed point$red lines in Fig. of attractor annihilation introduced in R¢fL1] to dynamical
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FIG. 5. (Color) Basins of at-
traction of the period-1(yellow
dotg, period-3 (blue dot3, and
period-9(gray dotg attractors.(a)
Annihilation of the period-3 at-
tractor at u.=0.023 and f,
=0.106. (b) Enlarged diagram of
the rectangular box ifa) showing
the annihilation of the period-9 at-
tractor at u.=0.0029 and f,
ia) X, =0.0275. The period-1, period-3,
and period-9 attractors are shown,
respectively, by the white dot, red
triangles, and white triangles. The
new period-9 orbits created by the
modulation with u.=0.0029 and
f.=0.01 are shown by the red
lines. The arrows indicate the di-
rections of the trajectorietlack
doty created by the resonant
modulation leading to the attractor
annihilation.

systems with multiple coexisting attractors resulting in thezero. Mathematically, this condition requires complex eigen-
selective control of generalized multistability. With the ex- values for a fixed point or a periodic orbit, i.e., the fixed
ample of the Haon map, we have demonstrated that a smalpoint should be a focus. We believe the results of this work
harmonic parameter modulation can annihilate multiple atmay have many applications, for example, for stabilization
tractors and make the system monostable. The optimal comf a solid state laser with intracavity second harmonic gen-
ditions for control are achieved when the control frequencyeration or a semiconductor laser with optical injection where
is close to the frequency of relaxation oscillations of thegeneralized multistability has recently been detedt&d|.
attractor to be annihilated or its subharmonics. A similar ap-The latter laser is often used in communications and the con-
proach was recently applied to a continuous system, namelyrol of multistability is of great interest for such a system.

to the Duffing equations with three coexisting attrac{dr’s)

and to a CQ laser with delayed feedbadk6]. The results This work was supported in part by Consejo Nacional de
were very similar and demonstrate the universality of theCiencia y Tecnolog de Meico (CONACYT) (Project No.
method. An important point is the applicability of the 33769-B and through a grant from the Institute Mexico-
method to other dynamical systems. As seen from Fig. 2 th&JSA of the University of California(UC MEXUS) and
method can be applied to systems that undergo damped o0SONACYT. The author also thanks J. M. Saucedo for his
cillations to an equilibrium point so thdt is finite and non-  assistance in the numerical simulations.
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